Class 7 Maths Chapter 10 Practical Geometry

*Class 7 Maths Chapter 10 Practical Geometry STUDY MATERIAL PDF
Class 7 Maths Syllabus
1.Integers
2.Fractions and Decimals
3.Data Handling
4.Simple Equations
5.Lines and Angles
6.The triangles and it's properties
7.Congruent Triangles
8.Comparing Quantities
9.Rational Numbers
10.Practical Geometry 
11.Perimeter And Area
12.Algebraic Expressions
13.Exponents And Powers
14.Symmetry
15.Visualising Solid Shapes 

Revision Notes on Practical Geometry

Line segment

A line segment is a part of a line with two endpoints.

Practical Geometry

A line perpendicular to a line segment

Any line which is perpendicular to a line segment makes an angle of 90°.

Practical Geometry

Construction of a line parallel to a given line, through a point not on the line

We need to construct it using ruler and compass only.

Step 1: Draw a line PQ and take a point R outside it.

Step 2: Take a point J on the line PQ and join it with R.

Step 3: Take J as a centre and draw an arc with any radius which cuts PQ at C and JR at B.

Step 4: Now with the same radius, draw an arc taking R as a centre.

Step 5: Take the measurement of BC with compass and mark an arc of the same measurement from R to cut the arc at S.

Step 6: Now join RS to make a line parallel to PR.

Practical Geometry

∠ARS = ∠BJC, hence RS ∥ PQ because of equal corresponding angles.

This concept is based on the fact that a transversal between two parallel lines creates a pair of equal corresponding angles.

Remark: This can be done by taking alternate interior angles instead of corresponding angles.

Construction of triangles

The construction of triangles is based on the rules of congruent triangles. A triangle can be drawn if-

  • Three sides are given (SSS criterion).

  • Two sides and an included angle are given (SAS criterion).

  • Two angles and an included side are given. (ASA criterion).

  • A hypotenuse and a side are given for right angle triangle (RHS criterion).

Construction of a triangle with three given sides (SSS criterion)

Example

Draw a triangle ABC with the sides AB = 6 cm, BC = 5 cm and AC = 9 cm.

Solution

Step 1: First of all draw a rough sketch of a triangle, so that we can understand how to go ahead.

Practical Geometry

Step 2: Draw a line segment AB = 6 cm.

Practical Geometry

Step 3: From point A, C is 9 cm away so take A as a centre and draw an arc of 9 cm.

Practical Geometry

Step 4: From point B, C is 5 cm away so take B as centre and draw an arc of 5 cm in such a way that both the arcs intersect with each other.

Practical Geometry

Step 5: This point of intersection of arcs is the required point C. Now join AC and BC.

Practical Geometry

ABC is the required triangle.

Construction of a triangle if two sides and one included angle is given (SAS criterion)

Example

Construct a triangle LMN with LM = 8 am, LN = 5 cm and ∠NLM = 60°.

Solution

Step 1: Draw a rough sketch of the triangle according to the given information.

Practical Geometry

Step 2: Draw a line segment LM = 8 cm.

Practical Geometry

Step 3: draw an angle of 60° at L and make a line LO.

Practical Geometry

Step 4: Take L as a centre and draw an arc of 5 cm on LO.

Practical Geometry

Step 5: Now join NM to make a required triangle LMN.

Practical Geometry

Construction of a triangle if two angles and one included side is given (ASA criterion)

Example

Draw a triangle ABC if BC = 8 cm, ∠B = 60°and ∠C = 70°.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment BC = 8 cm.

Practical Geometry

Step 3: Take B as a centre and make an angle of 60° with BC and join BP.

Practical Geometry

Step 4: Now take C as a centre and draw an angle of 70° using a protractor and join CQ. The point where BP and QC intersects is the required vertex A of the triangle ABC.

Practical Geometry

ABC is the required triangle ABC.

Construction of a right angle triangle if the length of the hypotenuse and one side is given (RHScriterion)

Example

Draw a triangle PQR which is right angled at P, with QR =7 cm and PQ = 4.5 cm.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment PQ = 4.5 cm.

Draw a line segment PQ = 4.5 cm.

Step 3: At P, draw PS ⊥ PQ. This shows that R must be somewhere on this perpendicular.

Practical Geometry

Step 4: Take Q as a centre and draw an arc of 7 cm which intersects PS at R.

Practical Geometry

PQR is the required triangle.

If you like my article, please comment me and if you have any question,let me know,thanks once again for being with me till now.

Contact Us 

Welcome to www.fuzymail.co.in

Please email us if you have any queries about the site, advertising, or anything else.

contact-us

rsp31350@gmail.com
6264302661

We will revert you as soon as possible...

Thank you for contacting us!
Have a great day


No comments:

Post a Comment

thanks for your feedback

ADMISSION OPEN | CLASS 1ST TO 12 TH

FUZY MATH ONLINE TUITION ADMISSION OPEN  CLASS  5TH  TO 12TH Welcome to FUZY MATH ! We’re always excited to hear from you. Whether you want...

POPULAR POSTS